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A THEORY OF ELECTRON ENERGY CONFINEMENT IN TOKAMAKS

I. Introduction

The problem of electron energy flux is one of the most perplexing problems in lokamak
research. The most recent transport codes, have focussed on the six regime transport model I •

• There , depending on the parameters , the plasma is subject to one of a number of instabilities.
• The nonlinear theory of each instability then gives rise to a transport coefficient in the ap-

propriate regime. Other codes have focussed on the so called pseudo classical model for
transport 2 — i~

This paper examines another approach to the problem of anomalous transport in
tokamaks , the so called marginal stability approach 89 The idea is that as soon as the plasma
becomes unstable , the electron transport coefficient jum ps abruptly to a large value. The
resulting enhanced transport forces the plasma to a stable regime. If some other mechanism

F forces the plasma towards instability, the logical steady state is at the marginally stable point.
The basic idea behind the marginal stability approach is described in Ref. 8. Recently, we
have derived relative temperature profiles for tokamaks 9. This paper is an extension of our
earlier work. The marginal stability approac h has also worked well in describing the behavior
of resistive shocks ~ the behavior of plasma in electric 8~ I , screw pinches 12, and also the
behavior of trapped particles in the magnetosphere 13 Also, there is apparantly some thermo-
dynamic evidence for the occurence of a marginally stable state 14 There are at least two re-
cent experimental results , the qualitative features of which are expl ained very naturally be
marginal stability theory . The first is the result of heating TFR with neutura l beams t 5 .
Although a large amount of beam power was deposited into the electrons the electon tempera-
ture did not change at all in one experiment , and changed only very slightly (less than 10%) in
another. This result is certainly consistent with the idea that the electron temperature profile
is resting at some marginally stable value. The harder it is pushed into the unstable regime ,
the harder the plasma fights back. The result is that the temperature profile always sits near
the marginally stable profile no matter how hard is it pushed.

The second is the results of heat pulse propagation studies in ORMAK l6~ A pulse of en-
ergy is dumped from the center of the plasma n a  0 (a — limiter radius) to about n/a .25.
The propagation of the heat pulse to n/a .75 is studied by X-rays. The remarkable fact is
that  the time for pulse propagation outward is considerably shorter than the energy contain-
ment time. This is so even though the relative temperature perturbation is quite small. This
too is consistent with the plasma temperature remaining at a marginally stable profile; any in -
crease in temperature drives the plasma to an unstable state , and is there fore rapidly expelled.

To examine whether the concept of marginal stability is viable for a tokamak plasma , we
have put together a small transport code which solves for electron and ion temperatures. A
large electron thermal conductivity is turned on whenever the plasma becomes linearly un-
stable. Our basic assumption is that in a real Tokamak the anaomalous electron thermal con-
ductivity that would result if the plasma were forced into an unstable state is large enoug h to
maintain the temperature near a linearly mar gina ly stable profile. Thus , as far as determining

Manuscrip t submitted June 29. 1977.

I
- 

- -
~~~ •

- - - -- - - - 
— A



MAN IIEIMER AND ANTONSEN

the profile is concerned all that is necessary to know is the marginal stabilit y condition (the
conditions under which the transport should become large) . The magn itude of the transport in
an unstable plasma affects only the rate at which the plasma is driven to the marginally stable
state.

Our approach is similar to a quasi l inear theory of transport with the additional assumption
that  the characteristic time over which the instabilit y can develoo and field amplitudes vary is
short compared to the time scale of the gross energy confinement in the plasma. Thus if the
field amplitudes are quasisteady indicatin g saturation of the instability the linear growth rate
must be nearly zero. This code however does not model as many physical effects as does
others ~. Specifically we do not solve for the density profile , the impurity transport or the neu-
tura l transport. Also, we assume that the current is always its stead y state value
(J — r (T e ) E) ,  so that the code does not solve for skin effect either. Our goal is only to see
whether the marginal stability approach is a viable concept. If it is , a more complete code can
be extended or modified to incorporate it.

In order to utilize this approach , it is necessary to carefully examine the stable and un-
stable regimes of parameter space. We find that the instability does not depend only on col-
lisiona lity. The density gradient , temperature gradient and shear all play important roles. One
particularly important effect is that the temperature gradient can be strongly stabilizing at low
enough temperatures , so that the outer region of the plasma is generally classical. At higher
temperatures only the shear is stabilizin g, and the electron temperature picks out the profile at
which shear stabilization just balances the temperature and density gradient induced growth
rates.

The results of our code are sufficiently encouraging that  we conclude that the marginal
stabthty approach is viable. Its theoretical foundation is very simple and u iderst andable ; it
does not rely at all on complex , specu!ative nonlinear theories of many different instabilities.
The only uncertainties involved are those inherent in linear theory .

As far as confinement times are concerned , our predictions are generally too high by a
factor of from two to five. However temperature profiles and scaling laws show much better
agreement with experiment. Two scaling laws which our code predicts are the increase of
confinement time with density in Alcator , and the fac t that the temperature half width and the
radius of the q — I surface depend only on a single parameter . q ( a ) , as measured in TFR.
Furthermore , our calculations of fluctuation levels also agree resonably with those measured in
ATC.

U. The Code

A — Basic Fluid Code

In order to test whether  marginal stability is a reasonable approach to the problem of
anomalous electron energy transport in tokamaks , we have constructed a simple computer
code 17 The equations which are solved numerically are

3 liT 1 8  OTe 171n — -~-- r ( K ~ + K ~~)~~~~- + E J  ~~3v e~~ j n ( Te — T 1 ) (Ia)

3 l i T 1 8  l i T,
j - n —~-~- — -~—r K ~, —~—— + 3t ’e~~~~f l ( T~ 

— T, ) ( 1)  ( I b )

2
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E — J/ .r (Ic )
where ~~~ are the electron (ion temperature ) .  I is the current density. E is the toroidal elec-
tric field , assumed to be independent of radius , ~r is the electrical conductivity given by
Rutherford ~ .

— n
~ e

2 0.457 Z —l

~ + Z,~1 
+ 0.29 Zei (2)

~~~
. is the electron ion momentum exchange collision time

—I 4 ’~/ ~~~n e 4 ln A
v T — (3)C 

3~~l/2 ~‘3/2

where Z~, is the effective charge of the plasma. Also, ~~ and K~, are the neoclassical expres-
sion for electron and ion thermal conductivity. Here was adopt the expression given by Ruth-
erford , Duchs t 2 ,

K. 1.81 Zei n~~ ,~ 1/2 
+ 

Z~p~ n 
1 + 1.6 r282

1 + 036v ’ T e R D e R 2
~~

K — 
0.68 Zei ~~~ 

1/2 
+ 

Z~j p,2 fl 
I + 16 r B  (4)

I + 0.36v~ 
r R R 2B~

Above , p~~ (p,~ ) is the electron (ion) larmor radius in the poloidal field , r , is the ion-ion colli-
sion time

r — (3m 1~
2 T,3/2 ) (4~c ne4ln A~ ) 

~. (5)
The quantities p. and ~; are the ratio of effective ion or electron collision frequency (m)  —l

to the ion or electron bounce frequency

~; _ +t l  + ZCf ) R 312 B/ r e r~
2 B~ (Te/ m) ”2 (6a)

— Zei R 3 ”2 BIT 1 r~
2 B,1 (T ,/ M)  1/2 (6b)

and all other notation is standard . Notice that the fluid equations solved have no magnetic
diffusion , but rather assume the steady state value for current. Thus , the code does not
correctly predict the approach to equilibrium. However it should predict the correct steady
state. Finally, K0,, is the anomalous electron thermal conductivity. Consistent with our as-
sumption of marginal stability, we take for Kan, a function which rises very suddenly at the
onset of instability.

There are two instabiliti es we consider here. The first are internal kink 18.19 and tearing
modes which occur at the center of the plasma. These are observed to have an m — n — I
structure and are detected by saw-tooth oscillations on the soft X-ray signals 20

~~. To simulate
the effect of these modes we assume K0,, jumps to a large value whenever the safety factor
q — rB/RB,, is less than unity. This is roughly the same approach taken in the Princeton nu-
merical simulations

The second instability, which we concentrate on here is the dissipative trapped electron
mode 22 . This will be discussed more fully in a later subsection. For our purpose now , we can
regard the plasma as unstable to this instability if the ratio of density gradient scale length to
shear scale length , H , is less than some critical value (4~,. The form for the anomalous thermal
conduction which we choose is

3

hlII~~ —~~~~—~~~~~~~--r~~~~~~—-------—--— 
~~~~~~~~~~~~~~~ i
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—‘I , 

~~~~~~ 
“

K , nD0.l g 
•~~~~~~01  

[
1 + q “ I + (H/H i., ) “

where 
~~~ 

is the Bohm diffusion coefficient
cTD8 — 

I6eB ’ (8)

and n, ii > > 1. We have called the functions in the parentheses thermostat functions be- —
cause they jump sharply from zero to one as q and H/H e, go from slig htly greater than one to
slightly less than one.

Many of the quantities in Eqs. ( 1) — (8) depend on density. Therefore to run the code,
it is necessary to specify a density profile. In a later subsection , we discuss how the code could
be extended to solve for the density profiles self consistently. For all of the work presented
here however , density profiles are specified arbitraria lly.

The remaining things to specify are boundary conditions for temperature and current.
• We choose an electron and ion temperature of 10 cv , at the limiter and consider the total

current to be specified. This is equivalent to choosing a particular value of q at the limiter.

B — The Role of Nonlinear Theory

It is worth reiterating here that there is a very fundamental difference in the approach
taken here and the approach taken by others. Generally plasma is assumed to exist in a linear- ‘

ly unstable state. The transport coefficient is determined by the fluctuation level which is lim- —

ited by some local nonlinear effect , for instance resonance broadening 23, mode coupling 24 ’25 ,
etc. Therefore , to get transport coefficients , it is essential to have a nonlinear theory of all
relevant instabilities. In our approach , we assume the most effective stabilization mechanism is
the relaxation of the plasma to a linearly stable state. If some mechanism forces the plasma to-
wards instability, it is reasonable to assume that the plasma sits at marginal stability. For an
Ohmically heated tokamak , this mechanism is the channeling of the current into the hotter re-
gions in the center. This then increases the electron temperatur e gradient (since T,, ( r — a) is
held fixed at 10ev)). However a steep eleètron temperature gradient drives trapped particle in-
stabilities which then causes anomalous thermal conduction . Thus a dynamic balance should
be possible, with the tokamak temperature profil e sitting at marginal stabilit y.

Needless to say, nonlinear theory of the relevan t instabilities , plays a much less important
role in this type of plasma, than it does if the plasma is assumed to be everywhere linearly un .
stable. This is not to say that nonlinear theory plays no role at all. Indeed , the proper evalua-
tion of the thermostat functions , defined in the last section , can only be made through non-
linear theory . It is interesting to note however that the most recent studies 26 of stabilization of
drift waves and trapped particle instabilities by resonance broadening show no nonlinear sa-
turation unless y/w < (k 1 p v ,/ w ~ 

2 That is, no saturation unless the mode is only slightly
above marginal stability.

C — The Instability

It remains to determine H (.~. This can be done by examining the dispersion relation for
trapped electron instability 22.27 31 The theory of this instability is continually being refined ,
and it would be difficult o write an expression for growth rate which would be universally ac-
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cepted at this time. The disperion relation we use neglects the coupling between poloidal and
radial structure so it does not proper ly treat the two dimensional mode structure 3t . However it
probably does reasonably approximate all of the significant physical effects.

The dispersion relation we use is 32

— S ( b) { r  + ~ 11 — 

~j , b2 G(b) H — 1 — T

4. W ~~~(u. W+J d3v f,,, + J d 3v
UT w — v p p / ( Rq) W + lV ~f ~~~~~~

— 18,, — i~ r H S(b) (IT + ~(1 — ‘vp, ) I  G (b)

+ ‘, ~~(l + (I — 2b 2 ) G(b) fl 1/2 {r + ~ [1 + ~p , — ~q,b2 G(b) jp I/2

- . 0. (9)

In Eq. (9) above T — TeI T , ~ — w./w, i’,~,- — V
~~

/ ( V 3 T
~~

E)  . W~j  — (u .€ ,,
— n/R, S(b) — I,, (b) e b, b — k~p ,2 , vp , is the density gradient scale length divided by the

ion temperature gradient scale length , G(b) — I — I~ (b
2 ) / 10 (b 2 ) , UT denotes an integral

over untrapped regions of electron velocity space (v 1 p /vp > ~~ and also w b (v) >
(i’~~/ e )  (v s/v ) ~ where c0b (v) — ~~ v/ Rq ) , and Tdenotes the integra l over the trapped region

• of electron velocity space. The quantity ~~~~ — w . ( 1  + 71 e (1/2 ~~
2/ T  - 3/2)) where c, . is

the electron ‘liamagnetic drift velocity and .~,, is the ion collisional damping rate 33

• F$,1 — .7v 11 b1.j ~ +— (1 0.1 1L ) /w for kp1 < I ,

• and 8,, ~~~~~~~~~~ +~~~~(1 _ 0.7~~, )J/w for kp1 > 1. (10)

To derive Eq. (9) , we have split the electron velocity space up into tra pped and untrapped re-
gions. The w .*.,, (v/v t ~ 

2 term in the denominator of the trapped term is the effect of the drift
resonances. Here e ,, — L,,/R. In the untrapped term , we have assumed k11 — l/Rq. To cal-
culate the effect of shear induced damping, we have neglected the poloidal mode structure and
have performed a Pearlstein-Berk 34 calculation of the shear damping assuming krp , < < 1
and also assuming that a mode unstable on one mode rational surface does not couple to waves
on other rational surfaces. Unfortunately, this approximation is not valid for k, ,p ,  larger than
about 0.2. For larger kp,, the calculation of shear induced damping is extremely complicated,
involving the full two dimensional nature of the mode structure 3t . Preliminary indications are
that shear is somewhat less effective a stabilization mechanism 3U5.36 than is described in Eq.
(9) . We have arbitrarily reduced the effect of shear stabilization in our code in certain cir-
cumstances by multiplying the last term in Eq. (9) by a factor less than unity in order to assess
the consequences of this possibility.

We will now discuss qualitatively the effects of various terms in the dispersion relation.

I) In both the T and UT terms, the effect of a density gradient is destabilizing.

2) Shear is stabilizing for all k and all temperature.

3) An electron temperature gradient is stabilizing in the UT term.

4) An electron temperature gradient is destabilizing in the T term.

5 
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5) Ion-ion collisions are always stabilizing and can be an important stabilizing effect at
low enough temperature.

From these facts, some rough qualitative features of the instability can be discerned. As
the plasma temperature is lowered , there are fewer and fewer trappped particles to drive insta-
bil i ty.  There fore as the temperature is lowered , the electron temperature gradient will at some
point change from a destabilizing to a stabilizing effect. Since temperature profiles in tokamaks
are generally steeper than density profiles, we expect the outer , cooler regions of the tokamak
to be stable. As a very rough rule of thumb , we find that the electron temperature gradient

• changes from a destabilizing to a stabilizing effect at approximately the transition from the pla-
teau regime to the Pfirsch-Schliter regime.

The next problem is to analyize the dispersion relation to find the critical shear for stabil-
ity. To make any progress , it is necessary to make a few approximations , principally to shrink

-
• down the dimensionality of the parameter space. We wish to determine from Eq. (9) the value

of 64, the shear, necessary to stabilize all modes, that is we require Im (w (kp 1 ) i ~ 0 for all kp, .
To accomplish this we calculate the value of H necessary to stabilize the mode for each partic-
ular kp ,, call it 0 (kp 1) ,  and select H

~, 
to be the largest of these values. Thus , we view the real

and imaginary parts of Eq. (9) as two equations determing the two unknowns

~~~~ ~~~ ‘-~r ~~~~~ — 0) and ~9 (kp 1 ) .

The real part of Eq. (9) does not involve 69 and hence may be solved to determine cu ,.
Once w,. is known for each kp1 it is a simple matter to substitute w, (kp ,) in the imaginary part
of Eq. (9) to determine H (kp 1). Here we point out that cu, is the real frequency for a margi-
nally stable mode and not necessarily the real part of the frequency for a damped mode. In
our computations we assumed that the nonadiabat ic electron response was negligible insofar as
determining cu ,. In this case the equation for cu, is given by,

S(b) (r + ~ [1 — ~p, b2 G(b) 1 i  — 1  — r — 0 ,  (11)

where T — Te/ T , and ~ — cu /w. Equation (11) was further simplied by assuming r 1.5,
and ~p , — 1.0. This allowed us to calculate w/w as a function of kp, from the outset and ,
hence , it was not necessary to solve Eq. ( I I )  at each point in the profile or each time step.

The imaginary part of Eq. (9) can be written as follows,

*9~~ (b) —f 1  (v ,’, e ,,.e ,~~, q )  + ~i~ f2 (v ’ , € ,,.e .~~, q )  — 8 ,,, (12)

where
— ~ r S (b)  (Er + ~ (1 — 

~~ 
) I G(b)

+ ~~ (1 — (1 — 2b 2)  G (b)  11/2 ) (r  + ~ (1 + ip~ — ~71 b2 G(b) 111/2 , (13)

and f ~ and 12 are functions involving integrals over velocity space that result from the nonadi-
abatic electron response.

The first term in Eq. (12) is the density gradient driving term. The function .f ~ is always
greater than zero, indicating that the density gradient is always destabilizing. The second term
is the temperature gradient driving term. The function 12 can be either negative or positive
depending on whether the temperature gradient is stabilizin g (Pfirsch Schliiter regime accord-
ing to our rule of thumb ) ,  or destabilizin g (plateau and banana regime) . The third term is the
ion-ion collisional damping. We use polynomial approximations for f ~, and 12’ which are dis-
cussed fully in Appendix A. Then , from Eq. (13). we can solve for the critical shear , (4~,, for

6
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each k1 .  Once t4,, has been determine d we have everything needed to advance the fluid
quantiteS a time step.

In our computation Eqs. ( 11) and ( 12) were solved for five values of kp , .  These values
were kp, 0.25, 0.5, 0.75 , 1.0, 1.25. In order to determine the fluctuation level ,
evb/ T,. — 8,z/ n 0, we simply see what fluctuation level is required to produce the necessary tran-
sport. The quasi linear expression for the ~ermal conductivit y is

K —~~~
1

~~k~ ~~(k) I2 c 2
~~~ ~ 

/~ 
tiN 2 (nN 2/T  

(14)
k 3 B~ T~ 

m 
\4 w + 1t’ef — cud /

where the triangular brackets mean an average over the magnitude of the particle velocity.
Thus from the known value of Kan and kp, . a fluctuation level may be calculated.

The Density Response

Although we only solve for the temperature profile with an assumed electron density
profile , it is possible to solve for the density profile also. The resulting calculations however
would be much more involved for at least two reasons. First of all , using a specified density
profile for all time greatly simplified the numerics involved in the solution of the dispersion re-
lation. Secondly, to solve for the density, one must include all sources of electrons. This
means solving the coupled system of ion , neutral , and impurity transport , and also uti l izing re-
liable models for ion , neutral , and impurity recyclying at the walls.

However , in principle at least , it is not difficult to solve for the density the same way as
we solve for the temperature. The density equation is

On 1 0  On
— — — r ( D 1 +D an

) + S  (15)
lit r l i r  C Or

where D~, is the neoclassical diffusion coefficient , S is a term for all sources and sinks of elec-
tron density from Ware Pinch , ionization and recombination of impurities , and ionization and
recombination of neutrals. Approximate expressions for Scan be found in the Princeton work.
Finally D0,, is the anomalous Diffusion coefficient

_ _ _ _ _ _  

(
~ 1~ cr~ ~~

D a ’D8 
g 

• +aD B . (16)
0fl 1 + q “ I + 

~~~~~~~~~ 
“

In Eq. ( 16) above the factors a and a ’ result from the fact that the thermal conduction and
diffusion coefficients are not the same. The quasi-linear theory r f  the trapped electron
instability 24 gives a value for a. This quantit y usually has a value less than , but of order unity ,
typically a is about one half or one third. (Actually, for the trapped particle instability the
temperature gradients can drive particle fluxes and the density gradients can drive energy
fluxes. These effects could also be included in Eqs. (1) and (15).) An expression for a ’ would
have to come from the theory of the MHD instabilities occurring near the q — I surface in
the center of the tokamak.

To summarize , it is possible to extend the work presented here to include the density
response as well as the temperature response. Whenever the plasma is unstable , anomalous
diffusion is turned on and the density profile will uick ly relax. The anomalous diffusion
coefficient is then related to the anomalous thermal conduction coefficien t by the quasi-linear
theory of the relevant instabil i ty.

7
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The Dependence of the Temperature Profile on
the Density Profile and Exponent of the Thermostat Function

In this  subsection and the next few subsections we describe a series of tests of the code.
For all tests , we have used PLT parameiers in experimental  runs recently reported 37 . These
are R — l35 cm , a — 45 cm , q ( a )  — 4 .6 , B — 35 KG , Zei — 4 and n ( r  — 0 )  —
* l0 13 cm ~~. The first run used exponents n — 8, n ’ — 20 and a densi~y profile n — ii ,, ( 1 —

0.85 ( n a ) 2 ) .  The steady state electron temperature is shown ~n the dashed curve of Fig. I .
Clearly, there is a very large unstable region of th e plasma , extending nearly to the edge. The
density profile we have chosen is so unstabl e that no amount of shear consistent with q (0) —

I , q ( a )  — 4.6 can stabilize it. Thus the temperature gradi ent flattens out over a very wide re-
gion and the heat flux is characterized by Bohm diffusion. Finally, near enough to the edge ,
the plasma is linearly stable and the diffusion is classicial , but with a very large temperature
gradient. This result and the physical model used to derive it are obviously unphysical for a
number  of reasons. First of all , an electron tempera ture of 2 KEV so near the limiter is almost
certainly unphysical.  Second , it is not clear how accurate the numerics are for such a profile;
there are only two grid cells in the steep temperature drop region at the edge (although the
final steady state solution does remain constant in time ) . Third , and most important from our
point of view , the density profile is assumed frozen into a very unstable shape. The instability
will  in fact relax this density profile , as discussed in the previous subsection . Since our code
does not allow the density profile to relax , we have tried another run with the same density
profile , but where the density profile cannot itself drive instability. That is we have set 0,
but with all density gradient effects (fo r instance drift resonances) included in f2~ 

In a very
crude way, this mocks up the fact that the density gradient has relaxed and can no longer drive
the instabi l i ty.  The resulting electron temperature profil e is shown as the dash dot curve ‘n
Fig. ( I ) .  Notice that  the temperature profile now looks much more resonable and phys ic .~The fact that the temperature peak is somewhat higher is also resonable since the profile is
now more stable.

As a final example of the effect of density profile on temperature , we ran the code with a
more stable density profile n — n0 (1 — 0.5 (r / a ) 2) .  The result is shown in Fig. I as the solid
curve. Since this seems to be the most reasonable temp erature profile , in all our subsequent
runs , we used this density profile and retained f2 in the dispersion relation .

The next thing to examine is the dependence of the result on the exponent of the ther-
mostat function. Clearly, as n — oo the temperature profile will be indep endent of ti. Actually
the shape of the thermostat function depends upon the nonlinear theory of the instabil i ty.  It
may be that the effect of nonlinear theory (as manifest in the shape of the thermostat func-
ti on ) plays an important role. For our purposes , we neglected this aspect of the anomalous
transport and chose an n large enough that the temperat ure profile is independent of ~i. The
steady state temperature profiles for 3 different values of n, n 4, 16 and 32 are shown in Fig.
2. (The temperature profile for n — 8 is shown in Fig. 1). Notice that -the result for n — 4
gives a somewhat lower temperature than the results for n — 16 and 32. The reason is that in
both cases, the thermal conduction is a very small fraction of the Bohm value. However for (-)
< (-)~,, the thermostat function for n — 4  is larger than that for n 32 , so the thermal conduc-
tion is greater and the temperature should be smaller. Henceforth , we retained the choice n —

32 in all runs.

As a final check on the results of the code , we have taken the solid temperature profile of
Fig. 1 and have numerical ly  solved the full linear dispersion relation , Eq. (9). at 4 points on
this  profile. The numerical  solution of the dispersion relation confirmed that the profile is mar-
ginally stable. At the points in the profile where the (-) thermostat function is zero , the numer-
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i cal souluti on of Eq. (9) showed no instabi l i ty .  At the points where the 64 thermostat function
b greater than  zero , the numerical solution of Eq. (9) showed a very sl igh ly growing or damped
roots. The plasma therefore is very close to marginal stabil i ty.

Classical Versus Neo-Classical Resistivity

One possible question is whether  to use the classical expression for conductivity or the
neo-classica l expression

(r VC ,r (I — (1.9 (r /R )~~
2 — n / R) / ( 1  + v ,

’ ) ) .  ( 17)

In Figs. 3a and b are shown plots of electron temperature profile and q(r )  profile for the use of
classical and nonclassical resisitivty. Notice that the temperature profiles for the two are quite
similar. However the q profiles are strikingly different. For the case of classical resisitivity q is
everywh ere above one. For the case of non-classicial resisi t ivty, q sinks to values considerably
smaller than one.

The reason is that for the case of classicial resisitivity, the resistivity depends only on
temperature , so that flattening the temperature profile flattens the current profile. For neo-
classicial resisitivity however the resisitivity depends on both temperature and radius. Thus
flattening the electron temperature profile (which is all that anomalous thermal conduction can
do) does not flatten the current profile. Thus the instability is not reacting back directly on the
driving mechanism. (We are not sure how to interpret this result. If there is a strongly exict-
ed internal  k ink or tearing mode in the center , the magnetic field lines will almQs t certainly not
stay on smooth circular magnetic surfaces , but rather will more likely wander ergodigally
throughout the region q < 1. It is not at all clear to us whether neo-classical expressions for
resisitivity are valid in this case. Possibly, the neoclasical expression for resisitivity should be
averaged in some way over the q < 1 region. We have decided to avoid this problem by using
the ordinary classical expression for conductivity (Eq. (2)) so that anomalous thermal conduc-
tion alone flattens out both the temperature and current profile. However this question may be
w orth additional study.)

Dependence on Shear DampiI4

Recently there has been some speculation 3L35 ,36 to the effect that because of coupling of
different mode rational surfaces, shear is not as effective a damping mechanism as indicated in
the linear dispersion relation Eq. (9) . We have run the code with the shear induced damping
reduced by a factor of two (*4 — *9/2 in Eq. (9)) . The plot of electron temperature is shown in
Fig. 4. Notice that the central temperature drops from about 3.2 KEV to about 2.4 KEy . In
all our subsequent runs , we retain this choice , *4 — (4/2, in Eq. (9).

The Energy Confinement Time

• As will be shown in the next section , ..ur code generally gives good agreement with ex-
periment on central temperature and tempcrature profile , but not nearly as good agreement on
the energy confinement time T p. The reason is the extreme sensitivity of T p on relevant
paramet ers for ohmica lly heated tokamaks. The energy confinement time is defined as the en-
ergy content divided by the power into the tokamak IV (current times voltage) .

f  d 3r 3 / 2 n ( T  +
D F iv

Let us call the  central temperature T, and the temper~ ore half width .~n( T) .  Then the energy
content  scales as T,, .~n2 ( T) .  9
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In our code , only the current  is specified , the voltage must be calculated from the resisi-
tivit y profile. The conductivity scales as T,~

12 and the total resistance scales as .~n ~
2 ( f l .  Thus

the voltage scales as T,J 3
~

2 .~r 2 ( T) .  Hence the theoretical energy confinement t ime scales
as

T E ( Tf l)  - T,~
2 .~r~ ( T) . ( 19)

Thus a fifteen percent error in T0 and .~n ( T)  implies an error of more than a factor of two in
T E. This sensit ivity of r p is characteristic not only of our code, but is also characteristic of any
code which attempts to calculate temperature profiles of ohmica lly heated tokamaks with
specified current.

It might be argued that such a sensitivity is also true of experimental determinations of
T E. While there are experimental uncertainties in T,, and .~, r ( T) ,  an experimentalist at least
has an accurate measure of the voltage. Thus experimentally, the confinement time scales as

T E (EX ) - T, .~r 2 ( T) .  (20)

which exhibits much less sensitivity to the temperature and temperature profile than the scal-
ing shown in Eq. ( 19) . Thus we conclude that relatively inaccurate predictions of T E for ohm i-
cally heated tokamaks is something transport codes must live with.

Summary

To summarize , we assume in all subsequent runs the density profile n — — 0.5

(n/ a)  2) classical rather than neo-classical resisitivty, ti — 20, ii — 32, and that the shear damp-
ing is reduced by a factor of two. For PLT parameters R — 135 cm, a —45 cm, q ( a)  — 4.6, B
— 35 KG , Z~,,- — 4, n,, — 4.2 x 10 13 , and a hydrogen plasma is assumed , the prediction of our
code is shown in Fig. 4. Plotted are electron and ion temperature , q(n) and the radial depen-
dence of the q and *4 thermostat functions. The confinement time (electron plus ion) is 200
miliseconds . Clearly the inner region is marginally stable to the internal kink mode, the region
between n/a — 0.25 and n — 0.9 is marginally stable to the trapped electron instability, and the
outer most region is classical.

III. Results for TFR

• One very interesting experimental result from TFR 2 1 is that the temperature half width
.~r ( T)  depends on only a single parameter, q ( a) ,  even though two parameters , Band i are in-
dependently varied. This result comes out of our original simplified marginal stability theory ~~.

There the driving term for instability depended only on VI e and ~~, while the shear stabilization
term depended only on 6) and ,. Only the relative temperature profile was solved. However, in
the simplified theory, the only parameter characterzing the relative temperature profile was
q ( a) .  Thus ~ n ( T)  depended only on q ( a) .  the larger q ( a) ,  the more peaked the temperature
profile. Although we now use a much more complicated dispersion relation , the same basic
result still holds true. In Fig. 5 is shown (solid line) the predictions by our code for .1~n( T)  as a
function of q ~ (a) . 

-

Here we have assumed Zei — 3 and 
~~ 

— 6 x 10 13, and a hel ium plasma was assumed
since most of the experiments in Ref. 21 used a helium plasma. Various dots show the calcu-
fated points. Although there is some scatter to the points , .~n ( T)  basically does depend on the
single parameter q ( a) .  The dashed line shows the experimental result from TFR. Note that
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our code predicts somewhat wider temperature half widths than are measured. A possible rea-
son for this  discrepancy is the effect of radiation. This will  be discussed qualtatively shortly.

Another  interesting result from the TFR experiment is that the position of the q — I sur-
face. as defined by the radia l position of the mode in the saw tooth oscillations in the soft
X /ray sign al , also depends only on the single parameter q ( a) .  In Fig. 5 , the dash dot line
shows that the predicted value for the q — I surface, as defined by the radial position where
the q thermostat function drops to half its maximum value, also depends principally on this
single parameter.

In Fig. 6a and b are predictions of the code for electron temperature compared to
experiment 21 , for three discharges. The predicted energy confinement times (electron plus
ion ) are — 65, 96, 108 ms. for the 3 cases B — 25 , 40 and 50 Kg. These are larger than the
experimental values by about a f actor of 5. Notice however that the code does give good
agreement with experiment as regards central temperature. In Fig. 7 are plotted the radial

• dependence of Ti., Ti, q, for the run with B — 50 Kg, / — 140 KA.

Other quantities of interest are the kp, of the fluctuation and predicted values of tvb/ Te as
a function of radius. These are shown in Fig. 8 for a discharge with 60 KG , 300 KA. The
fluctuation level seems to be comparable to , but somewhat larger than recently reported 38 

~~~~~~

Actually the values for ech/ T given in Ref. 38 should be doubled~~. Notice that the discon-
tinuit ies in eth/ T with n come about at the position where the kp, of the mode jumps. If we
could have assumed a continuous spectrum in k, e t l / T e  would surely be a continuous function

• of n.

We now discuss what effect impuri ty  radiation would have on the temp erature profiles.
Experiments on TFR have shown that a large fraction of the input ohmic power is radiated
away by impurities 38. The light impurities, typically Oxygen, radiate away the largest share of
the power, and this radiation comes from the edge regions of the plasma, in the center the Ox-
ygen is fully stripped 41 ’42 and there can be no line radiation. The heavy impurities , typically
mo ly lduim radiate away a smaller fraction of the power and this radiation comes from the cen-
t.al hot region of the plasma. The radiation is still line radiation; molylduim is not fully
stripped unti l  the plasma reaches a much hi gher temperature.

We will first discuss the impurities near the center where there is anomalous tranport.
Our basic hypothesis is that in the marginally stable regime , the plasma picks the marginally
stable profile nearly independently of the driving mechanism. Thus if there is an additional
energy loss term , the plasma will still remain at a marginally stable temperature profile, but the
thermal conduction and fluctuation level will decrease. However if the number of impurities is
so great that classical conductivity alone is sufficient to maintain a stable profile , then clearly
this profile cannot be maintained. If the number of impurity ions is larger than this critical

• value, the tem perature should drop. Thus in the regions where there is anomalous transport a
tokamak electron temperature profile should be relatively insensitive to the presence of impuri-
ties as long as the number of impurities is sufficiently small. For larger concentrations of im-
puriti es , the electron temperature should drop sharply as the impurity concentration increases.

We conclude this section with a discussion of the effects of impuri ’ - radiation for plasmas
whose edge region is classical. If the edge region of the tokamak is classical , and the electron
and ions are nearly equilibrated ( T e — T, 1), and there is no radiation loss or energy deposi-
tion in the edge region , Eqs. ( 1) in the edge region can be reduced to

I I
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r K~., -
~~

-
~~ — tosr,iant. (21 )

On
Above we have made use of ’ the fact that K~. 1 > >  Kte. Since the ohmic energy channels into
the hotter reg ions , it is reasonable to assume no energy deposition in the edge region. Equa-
tion (21) simply states that the total energy flux through each cylinder is constant, and is equal
to the Ohmic input  energy. If there are losses due to radiation (or charge exchange, etc.), then
the energy flux in the outer region must be smaller because some of the ohmic input  power
has been radiated away before it reaches the edge. This then implies that will be smaller
at each temperature in the classical region , and thereby .~n( T)  will decrease.

IV. Results for Alcator

Perhaps the most striking experimental result for Alcator is the increase of energy
confinement time with density 43’44. Our code does predict this basic dependence , although as
with TFR , the actual confinement time is too large , this time by about a factor of three. In
Fig. 9 is shown the dependence of energy confinement time on central density for three
choices of field and current , B — 50 KG , / — 100 KA ; B — 75 KG , I — 100 KA ; and B — 75

F KG , / — 150 KA. In all cases, Zei — I and we used a hydrogen plasma. Notice that for central
densities less than about 2 x 10 14 cm ~~, the confinement time increases roughly linearly
with density. For larger n~ the confinement time begins to decrease again.

Apparently what is happening is that as long as a region of the plasma is goverened by
anomalous tranport , the central temperature and ‘emperature half width are relatively indepen-
dent of density. Then the power input  is independent of density , since the resisitivity depends
only on temperature. The energy content however is proportional to density, so that the ener-
gy confinement time is proportional to density. When the density is sufficiently hig h however ,
the plasma is in the Pfirsch Schluter regime , and there is no trapped particle instability. Then
the energy confinement time begins to decrease with density. For all three choices of current

F and field, the points with n0 — 5 x 10 14 were completely stable. Not only are there no
trapped particle instabilities in the region of maximum gradient , q was everywhere larger than
one so that are no MHD modes in the center either. Apparently the largest confinement time
occurs just on the transition from anomalous to classical thermal conduction. The highest elec-
tron temperature however are in the regime of anomalous thermal conduction and low
confinement time. In Fig. 10 a and b are plotted the radial dependence of T~, and 7 for
different densities for the case B — 75 KG , I — 100 KA. Notice that at low density, where the
thermal conduction is anomalous , the temperature profiles are quite peaked. At higher density,
where the thermal conduction is classical , the temperature profiles are quite broad.

V. Results for ATC

Since fluctuation spectra were measured in ATC 45, we have run our code for an ATC
plasma in the uncompressed state. The parameters are B0 — 16 KG , / — 65 K A , n~, — 1.4
x 10 13, Z~,, —2.  A plot of electron temperature , ion temperature and q as a function of radius

is shown in Fig. I I .  In Fig. 12 a and b are shown the radial dependence of kp, and e~b/ Te —

~n/ n 1,. Typical values of &i /T(, 10 2 are consistent with values measured by microwave
scattering in Ref. 45.

VL Conventional and Uncon ventional
Approaches to Electron Heating

Since Ohmic heating has not heated the electrons in a tokamak plasma to more than
about 2.5 Key . it is general ly agreed upon that some sort of supplementary heating is necessary
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to reach reactor temperatures. Current ly ,  people are investi gati ng heating by microwave and
n eutur a l  beams. The obvious hope is that  by. say, doubling the input power one can double
(or more than double ) the plasma temperature. For our purposes here , we define as conven-
tional heat ing such schemes which rely on increasin g the input  power.

However there are two sides to the heatin g problem , the energy input and the power
losses. If the ion losses are classical , as assumed here , then there is no way they can be re-
duced. The electron losses however are anomalous. If there is anyway these losses can be re-
duced, the electrons will heat. Furthermore they will heat without  additional input power , so
the confinement time will increase. (Actually , controlling the losses probabl y requires input
power also). We will  define as unconventional heating such schemes which rely on controlling
the electron losses. The situation is rather like a phase change 8. If water is just at the boiling

• point , putt ing in excess energy does not raise its temperature. Howeve~ raising the boiling
point does allow the water to be heated to higher temperatures. The problem with heatin g by
controll ing losses is, of course, that there is now no general agreement on what causes these
losses, much less on how these losses can be controlled. Nevertheless , at least our model of
the anomalous losses shows that there is a great deal to be gained if one can control them.

• In this section we discuss one conventional heating scheme and three unconven tional
heating schemes. All runs are done for TFR with I — 140 KA and B — 50 KG. The results
are summarized in Table I .

The first heating scheme we examine is heating of the plasma by neutura l beams. We
have performed two runs. The first of these runs doubled the total Ohmic power by depositing
38 KW of beam power into the ions and another 38 KW into the electrons. The deposition
profile is uniform as a function of radius. As is shown in Table I the centra l electron tempera-
ture increases from about 2.5 Key to about 2.8 Key . The confinement time however decreases
from 108 ms to 74 ms. To examine the effect of more beam power and a better deposition
profile , we have done another run tripling the original Ohmic power to 76 KW deposited in
ions and 76 KW in electrons and choosing an energy deposition profile proportional to the
density profile. The central electron temperature now rises to 3 Key , but the confinement time
decreases to 59 ms.

One can understand these results very simply. As more power is injected into the plasma ,
the temperature gradient tends to increase and the plasma tends to be pushed further into the
plateau and banana regime. Thus the plasma is driven into a more unstable state. However , as
the plasma is pushed into a more unstable state , it is fighting the thermostat function , which
pushes it back toward stability. The harder the plasma is pushed toward instability, the harder
it fights back. Thus , according to our theory , increasing the input  power into the electrons is
not a particularly effective way to heat the plasma.

It is now worth while to compare these results with experimental results of beam injec-
tion in TFR I5~ A quantitative comparison is difficult because the confinement times we calcu-
lated for ohmica lly heated tokamaks were too large by about a factor of five. Correspondingly,
the Ohmic power input  was too small by somewhat less than this  factor. These are some quali-
tative comparisons that can be made however. The input  beam power into TFR was also com-
parable to or larger than the Ohmic input  power , and the power deposition was about half  into
electrons and half into ions. The observed ion temperature increased by about 1 Key . Our
code showed a considerably smaller increase in 7’, (the central ion temperature only increased
by about 200 ev). The reason is that the ions are in the Plateau regime where the thermal
conductivity is an increasing function of temperature. However, once the ions are heated to
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the  banana regime. where the thermal conductivi ty is a decreasing function of temperature ,
• si gnif icant  heating ion should result with increasing input  power. We at tr ibute the  disagree-

m ent  between the computed and experimental  ion temperature to the fact in the experiment .
much more power is going into the ions from the beams. Thus the ions can be heated up to
the banana regime. Additional ion heating then requires much less beam power.

One very intesting result however is that in the experiment , the electrons either do not
h eat at all , or else heat by no more than 10%. Figures 8 and 13 of Ref. 15 show electron tern-
perature before and during injection , and there is very little difference. It appears that the
thermostat function controlling the experimental temperature profile in TER has an even hard-
er onset than the thermostat function we have been using, Eq. (7), with n —32.

We now discuss three unconventional heating schemes. First , let us imagine that some
way could be found to stabilize the MHD instabilit y at the q — 1 surface. Since this  is a large

• scal e instabili ty,  this may possibly be done with feedback or dynamic stabilization. It is in-
teresting to note that dynamic stabilization has recently been shown to be possible for the
Raleigh-Taylor instability in a laser produced plasma~~. While we do not know if dynamic sta-
bilization of internal  k ink and tearing modes is possible, our results show that it is worth addi-
tional investigation.

In our numerical simulation , we have not assumed complete stabilization of M U D  modes.
rather we have assumed that it is the q — 1/2 surface which is unstable rather than the q — I
surface. The result , as shown in table I ,  is a very impressive amount  of heat ing. The central
electron temperature is increased to 4.4 Key and the confinement t ime increases to 425 ms.
Apparantly what is happening is that decreasing q (0) by a factor of two increases the allowed
shear by about a factor of two. (Recall that the shear is related to the change in 1 / q.) The in-
creased shear then allows for larger electron temperature gradients before reaching the thres-
hold for instabil i ty.

Another way to reduce the electron losses is to artificially increase the collisionality of the
electrons. At least one way to do this is to bathe the plasma in microwav es at the electron cy-
clotron frequency 47. This will cause enhanced pitch angle scattering of the electrons. Thus
the temperature at which the electrons enter the plateau and banana regime is raised , so that a
larger part of the plasma cross section will be stable. Since the pitch angle scattering is caused
only by the microwave power , and not by an electron-ion scattering , the plasma resistivity will
be unaffected , so there will be no additional energy input  caused by an anomalous resistivity.

We have done a numerical simulation in which the collisiona lity in the dispersion rela-
tion and electron thermal conductivity are increased by a factor of 2.5. but where the col-
lisiona lity in the resisiti vity is unchanged. The results are shown in Table I . The central elec-
tron temperature increases to 2.9 Key and the energy confinement time increases to 145 ms.

If this interpretation is correct , it implies that heating experiments at the electron cyclo-
tron frequency will do as well or better by injecting power with a spectral width .~~ o,/w - 2a/R ,
instead of a single frequency chosen to match the cyclotron frequency at a particular point.
Such a spectral width would allow for the electron col l isiona lity to be increased across the en-
tire plasma cross section.

As a final example of the control of electron losses, we wil l  discuss shaping the plasma
cross section. It has recentl y been shown that an elliptical cross section both slightl y increases
the shear induced damping 48 and reduces the trapped particle induced growth 49~ 0 While  our
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cod e is not capable of handl ing elliptical cross sections . we mock up the effect of ell iptici ty by
r increasing the (reduced , See Sect. llG) shear induced damping by a factor of 1.3 and reducing

the  trapped particle induced growth rate by a factor of two. This corresponds roughly to an el-
l ipt i ci t y of Ihree 4t ‘°. As is shown in table 1 , the central electron temperature increases to
2.95 Ke y and the energy confinement  time increases to 142 ms. It should be restated now that
in all three unconventional  heating schemes, the power used to reduce the electron thermal
conductivi ty was not figured in the definition of confinement time. The reason is that we do
not know what this power is. Surely power is needed to stabilize the q — I surface or to in-
crease the electron co llisiona lity with microwaves at the electron cyclotron frequency. Shaping
the cross section , however , should require no additional power.

To summarize, we have shown that conventional heating is possible , but that  the
confinement t ime (or at least the electron confinement time in experiments ) is normally re-
duced. However heating by controlling the anomalous losses offers a p otentiall y very attractive
way to heat the electrons in tokarn aks.

VII. Conclusions

Our conclusion is that marginal stability theory is a very useful approach to the problem
of electron energy confinement in tokamak s. At the least this theory provides a worst case
analysis of the anomalous thermal transport resulting from a given instabil i ty.  It predicts an
energy confinement time scaling will  density, as seen in Alcator ; and it also shows that the
temperature half width  .~r ( T) and the radius of the q — I surface depends only on the single

• parameter q ( a ) ,  as seen in TFR. Also , it provides very natural  explanations for the failure to
heat electrons with  neutural beams in TFR and also for the heat pulse propagation experi-
ments in ORMAK. Finally,  it suggests that  controlling the electron losses may be a more

• effective approach to electro n heating than injecting additiona l power.
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APPENDIX

The functions J1 and 12 defined in Sec. II contain contributions from the trapped and un-
trapped electrons ,

f t  (I —~~) l m ( 7’~ + V 1 (Al)

12 —
~~ I m { T2 + V2~, (A2)

where

v — ( _!L~L. e x p ( — ~~
2)

‘ -‘u ~.3I2 (I — 

~~~~ 
R0 )

v — I _
~ L exp( _~~2) (~~2 — 3/2)

• 2 j 11 ~.3/2 (1 
~~~~~~~~~ 

R0 )

R0 ~e’ 
(Rqw ) — ce ,, (2m ,/ r m e ) 112/ qb , ~ —

T — 1._ ~~.L. e x p ( — ~~
2 )

-‘r ,~.3I2 1 + I R1 ~ —

T — I_ .~L~L (sc 2 3/2) exp( _~~2)
2 J7~~. 3I2 I + 1R 1 ~~~~~~~~ —~~e,, E 2

and 
• R 1 — v

~ / (€ w )  — 2~ ~,, v. (m j e/ rm e ) “2 / qb.
U and T denote untra pped and trapped. An electron is considered trapped if < (2 € )  I/2~~
and E > ~~~ The first of these conditions defines the boundary of the loss cone in velocity
space and the second condition results from demanding that the effective collision frequency
for an electron is less than the bounce frequency in the magnetic mirror.

With this perscripcion of the trapped and untrapped regions of velocity space the ima-
ginary parts of the untrapped integrals , V1 and V2 can be obtained by straight forward integra-
tion

Im( V1 ) — 1r~~
2 exp (  — R0~’2 ) [ 1  — exp ( — v !~

2 ) I / R0

i,,,( v 2 1 u_ 1r U2 ex p(_ . Ro
_2 ) !ex p(....v !

~
2
)(+ 

_ v
~~~

J 

_
i}/IR

where we have assumed R0 > > ~ 
—1/2

The trapped integrals 
~
‘1 and T2 can be further simplified by performing the indicated in-

tegration in spherical coordinates, f  d3
~ — 4w (2e ) t/ 2 f  ~t 2~j~• Thus, the functions 

~
‘1 and

~~

‘
2 contain a transcendental dependence on the three parameters v .e, R 1, and ce ,,.

We now show that setting the lower limit in the T1 and T2 integrals to zero gives a good
approximation to these integrals for all v .~~. If v > I so that the lower limit of integration is
significantly different from zero the value of R 1 will generally be quite large due to the square
root of the mass ratio in the definition of R1 . Given that R1 is large the integrals can be
evaluated asymptotically for large R 1 . For instance the asymptotic value of T1 is found to be

• — —i 
ir 

(2e ) 1/2 e x p ( —  ,,~~4 ) + ~4 2  + ÷ v.eI . (A3)
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The explicit  dependence of (A3) on t’ •e is actually quite weak for :‘•~, 
— 1. If 1• e > >  1 . in

which case R 1 > >  I . and T1 — 0, even if the lower limit  of integration had been chosen to
be zero rather than ~~~~ both expressions are so small that either one gives a good approxima-
tion to the necessary shear. Thus, we ignore the explicit dependence of the integrals T1 and

on i •
~
. by setting the lower limit  of integration to zero.

The remaining dependences of T1 and T2 on R 1 and ~ € ,, were approximated by polyno-
mials ,

4 E1 — R ?
I t ’r  I — 11 ~ I/2 ____________________________

1/2 1 + a1 R 1 + b1 R? + R?

4 E2 +/ 3 i?~ + 1. SR ?
i t  i

___ _
i ~ l/2 _______________________• 

~~ ~ 2 ’  — ~1/2 I + a2 R 1 + b2 R? + RI
where a1, a,, b1. b2,  and /3 are functions of ce,,, and E1 and E2 are the limiting vaues of

~~~~~ and I,,,{T2~ as R 1 — 0  which can be obtained exactly and depend on

The form of the polynomials and the dependences of a1, b1,  a2 ,  b2 ,  and i3 on 
~

€ ,, were
chosen by comparison with numerically integrated values of T1 and T2. It can be seen that
the approximations (A4) and (AS) agree with the actual values of 

~
‘1 and 

~
‘2 for both large and

small R1. By careful choice of the a’s and b’s we were able to get agreement within 10%
between the polynomials and numerically integrated values of 

~
‘1 and 

~
‘2 for the relevant

parameter ranges of R 1 and ~~€ ,,.

The vaues of these parameters are

E1 — ÷ exp ( — (~€ ,,) 1 
~ ~~~ 

3/2 (A6a)

E2 — — ÷ ~ff — (~€ ,~) exp ( — ~~~~ ~~~ ~~~ 
) 3/2 (A6b)

for all ~~~ The vaues of 13, a1, a2 ,  b1 and b2 are

/3 — 3.17 — 7.26~e ,, (A7a)

a1 — 0.0. (A7b)

b1 — 2.66 + 7.56 (ce ,, ) , (A 7c)

a2 — 11.18 (Ce~ ) 2
~
73. (A 7d)

and

b2 — —8 .45 + 38.44 (~e~ ). (Ale)

if ce ,, > 0.64 and
• a1 —1 .7 + (3.4 —2.65 (~e,,)/(I + 570 (~e~ )

4). (A8a)

b1 — 2.0 + 48.58 ( (u,, ) _ 0.2)2/((~e~ ) + 0.72). (A8b)

/3 — —7.20 — 5.71 (~€ ,, ) + (4.67 + 20.6(~e ,, ))/(I + 3.58 (
~€ ,, )

~
) , (A8c)

a2 — O.98/ (~E~~) + 1.5 , (A8d)
b2 — 48.70 ~~~ ) 

2.52 
+ 0.0025/ (~~ ) 2.4 • (A8e)

for ~~ < 0.64.
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MANHEIMER AND ANTONSEN

Table 1

Scheme Added Power Te( O) TE 

-

Only Ohmic, None 2.5 key 108 ms

Beam, Uniform 38 kw into ions, 2 8 k~~ 74 ~~Deposition 38 kw-electrons -

Beam, 76 kw-j ons
Deposition 76 kw-electrons 3 key 59 ins

Stabilization ? 4.4 key 425 msofq l

Increasing
Electron 2.9 key 145 ins
Collisionality
B y 2 5

-

~ CrOSS Section None 2.95 key 142 insShaping
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4.0 1 I
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~~ A ‘t’%. —• .

• ~~~~~ ‘ 
.—.,

~~.• S..,
~~ —— —~~~~~~~

— _ \

T• (keV) 2.0 \ \. 4.

1.0 —

0 .~~ .~~ .~~ .~~~~~~~.0
n a

Fig. 1 — PLT electron temperature profiles ; solid line; full disper-
sion relation n = n~, ( I  — .5 r2/ a~); dashed line, full dispersion rela-
tion n = — .85 r2/a2); dash-dot line modified dispersion
relation n = n0( 1 — .85 r2/a 2)

4.0 
~

•1

3. 0 —  —

n= 16

Te (keV) 2.0 — —

n — 4
1.0 — —

0.0 1
0.2 0.4 0.6 0.8 1.0

n a

Fig. 2 — PLT electron temperature profiles for various values
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• a’ CLAS SICAl. RESISTIVITY bI NEOCLASSICAL
RESISTIVITY
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I I l i l t  l i l t !
0 .1 •2 .3 4 5 .6 -7 .8 6 1.0 0 .1 .2 .3 4 .5 .8 .7 8 .9 1.0

‘ a  r/a

Fig. 3 — PLT electron temperature profiles obtained with (a) classical
and (b) neoclassical resistivity

I I —

~~~~

— 8

3~~~~~~~~
- 7

- 6 . 4

5 2 -  \ ~~~— T~ \

~~~~~~~~~~~~~~~~~~~ Th IS)

j :  ~
0 .1 .2 .3 4 .5 6 .7 .8 9 1 .0

Fig. 4 — PLT electron and ion temperature profiles showing regions
of MMD and DIEM instability
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Fig. 5 — Temperature half-width and width of the
q(r) = 1 region in TFR as a function q(a )~~. The
solid and dash-dot line are approximate fits to the
numerically obtained data points. The dashed line is
the experimentally observed temperature half-width.
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Fig. 6 — Electron temperature profiles in TFR. (a) numerically obtained
(b) experimentally obtained
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Fig. 7 — TFR electron and ion temperature profiles
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IbiFig. 8 — (a) The most unstable mode m TFR as a AMPLITUDE
function of n a , and (b) the fluctuation level implied
by the numerically determined anomalous t ransport
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4 Pig. 9 — Energy confinement time versus central density in Alcator
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Fig. 10 — Electron and ion temperature profiles
in Alcator
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Fig. 11 — Electron and ion temperature
• profiles in AIC
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Fig. 12 — (a) The most unstable mode as a
function of n/a in ATC and (b) the fluctua- AMPLITUDE
tion level implied by the numerically deter-
mined anomalous transport 
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